REPORT DOCUMENTATION PAGE

Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and revieyving the collection of information. Send comments regarding this burden estimate or any other aspect of this
callection of information, including suggestions for reducing this burden; to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson

Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188}, Washington, DC 20503.

]

1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
15.Feb.00

3.  REPORT TYPE AND DATES COVERED
THESIS

4. TITLE AND SUBTITLE

THE EFFECTS OF DISPLAY HIGHLIGHTING AND EVENT HISTORY ON
OPERATOR DECISION MAKING IN A NATIONAL MISSILE DEFENSE SYSTEM

APPLICATION

6. AUTHOR(S)
2D LT SMITH MELISSA A

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESSIES])
UNIVERSITY OF ILLINOIS AT URBANA

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

THE DEPARTMENT OF THE AIR FORCE

AFIT/CIA, BLDG 125
2950 P STREET
WPAFB OH 45433

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

FY o3

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION AVAILABILITY STATEMENT

Unlimited distribution

In Accordance With AFI 35-205/AFIT Sup 1

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

DISTRIBUTION STATEMENT A
Approved for Public Release
Distribution Unlimited

14. SUBJECT TERMS

17. SECURITY CLASSIFICATION
OF REPORT

18. SECURITY CLASSIFICATION
OF THIS PAGE

19. SECURITY CLASSIFICATION

OF ABSTRACT

15. NUMBER OF PAGES
68

16. PRICE CODE

20. LIMITATION OF
ABSTRACT

Standard Form 2984Rev 2-89) (EG)
Prescribed by ANSI Std
Designed using Perform Pro, WHS/DIOR, Oct 94



THE EFFECTS OF DISPLAY HIGHLIGHTING AND EVENT HISTORY ON OPERATOR
DECISION MAKING IN A NATIONAL MISSILE DEFENSE SYSTEM APPLICATION

BY
MELISSA ANNE SMITH

B.S., United States Air Force Academy, 1998

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Master of Science in Psychology
in the Graduate College of the
University of Illinois at Urbana-Champaign, 1999

Urbana, Illinois




UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

THE GRADUATE COLLEGE

JULY 1999
(date)

WE HEREBY RECOMMEND THAT THE THESIS BY

MELISSA ANNE SMITH

ENTITLED.__ THE EFFECTS OF DISPLAY HIGHLIGHTING AND EVENT HISTORY
ON OPERATOR DECISION MAKING IN A NATIONAL MISSILE
DEFENSE SYSTEM APPLICATION

BE ACCEPTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR

THE DEGREE OF _ MASTER OF SCIENCE
ES [ YA
"

Director of Thesis Research

Head of Department

Committge on Final Examinationt

A A Y o

Chairperson

T Required for doctor’s degree but not for master’s.

0-517




iii

ABSTRACT

A proposed display for the National Missile Defense (NMD) task was developed to aid
operator decision making. Subjects were required to monitor a simulated battle, consisting of
launches of enemy missiles against the U.S., and counter-launches of defensive missiles against
these incoming warheads. Defensive missiles were not perfect at destroying targeted enemy
missiles, there was an estimated probability of .20 that a defensive missile will miss its assigned
target. The risk associated with the probabilistic outcomes was displayed to the operator as a
distribution in part of the display. The counter-launches were accomplished by a fully automated
system, with the human operator as a monitor. The subject controlled a pool of reserve missiles
(which are limited in number), not included in the system automation, which were deployed
when the subject determined that the threat called for such action. Subjects had to make risk-
resource tradeoffs concerning the risk associated with the threat and the limited resources of the
reserve missiles. Twenty military subjects saw 40, two minute scenarios, with two enemy
launches of six missiles each. They were required to respond as to how many reserve missiles
they wanted to withdraw at four times during each scenario. The independent variable of display
consisted of the highlighting of one of the three possible outcomes (best case, worst case,
expected case) on the risk-resource display, or no highlighting, for a total of four levels. The
trend variable consisted of different outcomes of the success of each counter-launch against the
enemy launches. No significant effect of display highlighting was observed, possibly due to
experimental considerations. A significant effect of trend was observed, with more reserve
missiles withdrawn as time went on during a scenario, as well as the situation became more
threatening (more incoming enemy missiles). Further analysis revealed the existence of recency

and primacy effects (specifically contrast effects) on the number of missiles withdrawn.
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1. INTRODUCTION

A disturbing, yet realistic threat to the United States is the launch of missiles towards the
country, from one of the hundreds of countries that possess the technology to do so.
Surprisingly, a comprehensive system for the defense against ballistic missiles has not yet been
implemented, even with advances in modern day technology. Since the role of the human
operator in the National Missile Defense (NMD) system will be primarily one of monitoring, the
development of an effective defense should incorporate theories of human cognition, and, more
importantly the results of realistic, applied testing. Unfortunately, literature pertaining to such
an applied setting for this system is sparse. This study seeks to fill the gaps in an effort to
provide data relevant to the development of the NMD system.

In an assumed scenario, a number of missiles (containing multiple warheads) will be
launched at the United States from abroad. The NMD system automatically targets these and
allocates defensive missiles (Ground Based Interceptors) to destroy the incoming warheads. The
success of the Ground Based Interceptors (GBIs) is not guaranteed; rather it is probabilistic, and
only a finite number of GBIs are available. Probabilities of the varying levels of success are
computed by an automated system, based on a series of complex algorithms, and only the final
results are displayed to the operator. The human operator, given this data, can intervene and
choose to withdraw additional, reserve GBIs to be launched at incoming warheads. The role of
the human represents the final safeguard in the system and is crucial, since new intelligence
information can érise which is not considered by the automation algoﬁthms.

The decision of the human to intervene or not to intervene must be made under severe
time pressure, and with the possible consequence of nuclear holocaust in mind. This risk-

resource tradeoff is a very important part of the human operator’s task and makes relevant




several major psychological concerns. If the operator chooses not to withdraw enough reserve
GBIs from the pool of reserve GBIs he or she controls, the US may not have an adequate defense
for the incoming missiles. On the other hand, if the operator chooses to withdraw too many
reserve GBI, not enough GBIs will remain to combat future threats of enemy warheads
launched.

One prototype of a graphical NMD display that is being developed provides the operator
with several pieces of information that he or she must interpret in order to make GBI withdrawal
decisions. The display consists of a representation of the incoming warheads as a function of
time, as well as a Risk-Display, which will be the topic of investigation for this thesis. Since
each GBI is estimated to be about 80% successful in hitting the warhead it is targeted to hit,
additional risk exists because not all GBIs may hit their assigned target warheads. This risk is
shown in the form of a graphical distribution based on the binomal distribution, called the Risk-
Display. This display shows a probabilistic distribution portraying the number of GBIs needed
to handle the best case situation (where all warheads are hit by all GBIs fired), the worst case
situation (where all warheads get by or “leak” through the GBI defenses) and the expected case
situation (a value characterizing the central tendency of the distribution).

An example of the Risk-Display is shown in Figure 1 below. The scale on the y-axis is in
terms of the number of GBIs required to handle the current threat. Within the curve, the x-axis

represents the actual probabilities associated with each outcome.




Worst Case

Figure 1. Sample Risk-Display

The three probabilities, and thus the shape of the distribution, will change with the number of
enemy warheads still en route towards the United States at any given time. While the shape will
also change with the assumed probability of success of each GBI, in the current case this is held
constant at p=.80.

Preliminary results from evaluating operator monitoring behavior of the NMD system in
simulations indicate that people tend to intervene in the system automation more than they

should (M. Barnes, personal communication, 1999). This “trigger happy” tendency creates a




very serious problem for the NMD task. Here, the consequences for inappropriate human
intervention are very severe. If the operator does not trust the automation and withdraws
additional GBIs, the supply of GBIs will be unnecessarily decreased, leaving less for the defense
against future enemy launches.

The tendency of humans to over-intervene is a human performance issue that must be
investigated thoroughly before a satisfactory NMD system can be designed. The “trigger happy”
tendency in the NMD task will be considered in the contexts of human performance with
automation and decision making with probabilistic information. Flaws in monitoring
performance are not uncommon among humans when dealing with automation. As previously
mentioned, the human in the NMD system takes on the role of the system monitor, and it has
been shown that humans are not generally very effective monitors (Parasuraman, 1986). The
fact that the majority of the task requires monitoring the behavior of an automated system may
degrade operator decision making due to a lack of understanding of the complex algorithms
performed by the automation.

Research has also shown that humans sometimes have a difficult time interpreting and
applying probabilistic information when making decisions, which may help explain the tendency
to intervene (Edwards, 1968; Schipper and Doherty, 1983; Schum, 1975). For instance, while
the worst case situation is a very low probability event that requires the launching of many GBIs
(and therefore a strong need to withdraw reserves), the probability of this event may be greatly
overestimated when making decisions, an overestimation resulting from the salience in memory
associated with rare events, an issue to be discussed later. This salience would result in the

desire to withdraw more GBIs than necessary.




In probabilistic environments, the most accurate way to make decisions is by evaluating
the probabilities associated with the potential outcomes. Research indicates that people do not
typically make decisions this way in everyday life (Edwards, 1968). Not enough weight is given
to the actual probabilities associated with information. For instance, Schum (1975) found that
when jurors were presented with an eyewitness known to be unreliable, they failed to account for
this unreliability when making their decisions about a verdict, and they treated all witnesses as
equally reliable.

Within the research on probabilistic decision making, many biases have been shown in
the literature depending on the type, amount and order of information presented. For instance,
the results of a GBI launch (number of hits or misses of GBIs against enemy warheads) may
influence subsequent decision making, even though the probabilities associated with each
possibility are not necessarily altered by the results of prior launches.

To understand these problems in an attempt to alleviate them, we must explore the
relevant literature in each of these areas. First, a review of the relevant literature concerning
human interaction with automation will be presented. This is followed by a discussion of biases
in probabilistic decision making, including errors in the interpretation of probabilities and
influences the display may have in inducing such biases. Finally, a summary for the literature

review, and a general introduction to the experiment will be presented.

1.1 Human Interaction With Automation

While meant to reduce the workload and/or improve performance of human operators,
the introduction of automation can actually result in less than optimal performance from the
human (Parasuraman and Riley, 1997). When automation is added to a task previously

performed by humans, the role of the human changes from that of the primary operator to that of




a system monitor, and as a result, also changes the cognitive demands of the task. Despite the
fact that the automation was intended to ease the cognitive demands of the operator, these new

demands may sometimes be greater than the original demands without automation.

Proper
Calibration

Region of
Over-Trust

Perceived
Reliability

Region of

Under-Trust

Actual Reliability

Figure 2. Human Trust Calibration

Figure 2 (Gempler and Wickens, 1998) summarizes the calibration function relating human trust
with automated systems reliability. As shown in the figure, when an automated system is
perceived to be completely reliable by the human operator (shown along the y-axis), yet is not
completely reliable (sﬁown along the x-axis), the human operator can be described as over-
trusting the automation. This is the region shown in the top left oval of Figure 2. Over-trust of
automation occurs when the operator assumes that the automation will function correctly, and
consequently fails to monitor it with sufficient vigilance and to intervene when problems arise
(Parasuraman and Riley, 1997). This over-trust increases as the actual reliability of automation

increases (McFadden, et al, 1998) and as the human is progressively removed from the system,




i.e. relegated to the role of a passive monitor (Parasuraman, Mouloua, Molloy, and Hilburn,
1996; Wickens and Kessel, 1979).

On the other hand, when an automated system is perceived to be less reliable than it
actually is, the human operator tends to under-trust the automation (bottom right oval of Figure
2). Such behavior can result in the automation not being used to its full potential and possibly its
replacement by less than perfect human performance i.e., the “trigger happy” phenomenon
reported anecdotally in the NMD task. The literature has shown that a person’s under-trust of
automation can result from any of three factors: poor understanding of automation processes,
poor automation performance and a user’s overconfidence in his or her own abilities. First,
inadequate understanding of the automation processes has been found to be a factor in under-
trust in several studies. For example, Sarter and Woods (1995) observed this inadequacy when
studying commercial airline pilots flying with automated flight management systems. Second,
under-trust is also related to past poor performance by the automation, such as frequent false
alarms, as shown by Muir and Moray (1996) and Parasuraman and Riley (1997).

Third and finally, overconfidence in human abilities has been shown to be a factor in
under-trust. If people assume that their own performance will be better than the automation, they
will fail to utilize automation, even in cases where it performs better than the person (Riley,
1996). As an example, Liu, Fuld and Wickens (1993) had subjects complete a task involving the
assignment of customers to check-out lines in a supermarket. This assignment would either be
done manually, or through an automated system, where the subject was in charge of monitoring
the system. Unbeknownst to the subject, the monitoring situation was simply a recording of his
or her own performance in the manual situation. The results indicated that people trusted their

own performance over that of the automation (i.e. were less likely to detect errors), even when




the performance in the two conditions was exactly the same. Under-trust in the NMD system
may be a product of the general overconfidence of humans in their own cognitive abilities, or of
perceived unreliability of the system.

100% reliability in the NMD system is not possible given that the Ground Based
Interceptors are estimated to have only an 80% probability of hitting their assigned warhead
targets and furthermore that the automation algorithms may not always effectively account for
this GBI inaccuracy. As mentioned previously, initial data from prototype evaluations of the
NMD system (M. Barnes, personal communication, 1999) revealed that the human operators
tend to behave in the region of under-trust. In order to make human operator performance more
optimal, we must determine how to calibrate operator trust of the NMD automation. Most
research on human interaction with automation to date has focused on the region of over-trust.
The present study seeks to examine the region of under-trust in more detail, and to uncover the
mechanisms of human decision making that create mistrust.

The diagonal line in Figure 2 indicates ideal calibration between the actual reliability of
the automation and the human operator’s perception of the automation reliability. Merlo,
Wickens and Yeh (1999) suggest that a display that depicts the reliability of automation may
improve trust calibration. The proposed NMD display attempts to take into account the less than
perfect reliability of the GBIs. This reliability is displayed to the human operator in the form of
a graphical distribution of probabilistic dutcorﬁes, an example of which was shown in Figure 1.
However, displaying such probabilistic information poses new problems since humans are not
always adept at interpreting this type of information (Wickens, 1992). We now turn to
examining biases in probabilistic decision making which will be discussed to further understand

the role of the human operator in the National Missile Defense system.



1.2 Biases in Probabilistic Decision Making

The National Missile Defense Operator (NMDO)), is required to process several pieces of
very complex information that are presented over time, and make a decision on whether to
intervene or not intervene in the system automation by withdrawing or withholding reserve
GBIs. Wickens, Gordon and Liu (1998) identified three stages of decision making from an
information-processing perspective: attention, diagnosis and choice. These aspects of the

NMDO’s decision making task are represented in Figure 3:

T4

Infom\j'ation

Cues @ Drder Effects
N—Order of info

Figure 3. NMD Decision Making Framework

Figure 3 depicts the stages in decision making from left to right in the NMD task, as gray
blocks. The sequence of processes is shown with arrows in the Figure, with each event labeled
numerically in circles. Biases or heuristics that are expected to come into play at each stage are
shown in ovals. Particularly relevant biases, which will be explicitly examined during the
present study, are shown with bold text within the ovals. At far left in the Figure, depicted by the
arrows, are shown multiple sources of information about incoming enemy warheads, which

arrive to the operator over time (T1-T4). This information (the number of incoming warheads
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and the number of destroyed warheads) has predictable effects on the vulnerability or risk of the
United States, and these effects are shown to the operator in the form of a probabilistic Risk-
Display (2) of outcomes (best case, worst case and expected case probabilities, see also Figure
1). At process 3, the operator allocates his or her attention to different features of the
probabilistic display and then in process 4, forms a subjective belief (diagnosis) of the
vulnerability or safety of the United States. This belief may then drive operator attention back to
the display to seek additional information (5) and will certainly lead to a choice (6) of whether or
not to withdraw additional missiles from a reserve pool (i.e. whether or not to “over-ride the
automation”). If the choice is to withdraw, a decision is made of how many to withdraw based
on the assessed vulnerability. Within this framework, several decision making biases and
heuristics have been identified by researchers (as shown by the ovals), many of which may affect
the NMDO’s cognitive processing, and two of which, saﬁence and order effects, will be
explicitly examined in the present experiment.

1.2.1 Graphic Probabilistic Displays

We made a decision at the outset of this study to develop and provide a graphic
probabilistic display to help the NMDO. This decision is consistent with three findings in the
literature: 1) providing predictive information for tasks where prediction is involved tends to aid
decision making, 2) graphic displays can improve performance and 3) graphical displays of
probability tend to aid decision making over numeric displays of probability. These findings will
be discussed in the following section.

First, in the NMD task, planning/forecasting is involved since the. number of GBIs to
withdraw must be anticipated by the human operator. This planning is based on predictive
information as provided by the NMD Risk-Display. When people are asked to predict future

trends based on present and past values, they generally do not perform well, and tend to give
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predictions that are overly conservative (Wickens, 1992; Waganaar and Sagaria, 1975). In order
to alleviate this deficiency in human decision making, when people are given information as a
preview of likely future events, they tend to behave more optimally (Wickens, 1992). One
method of providing information as a preview of likely future events is accomplished by
predictive displays. Wickens and Morphew (1997) tested types of predictive displays in decision
making for an aviation task. The predictive displays increased pilot performance and decreased
pilot workload over the non-predictive displays. Furthermore, Gempler and Wickens (1998)
evaluated an uncertainty representation in the predictive display and found this to be feasible;
while it did not improve performance, it did reduce workload. In the NMD task, showing the
probabilities of three anticipated outcomes (worst, best and expected as shown in Figure 1) is
analogous to presenting a predictive display with an explicit representation of forecast
uncertainty since these probabilities show the likelihood of outcomes to follow. Since
predictive displays seem to guide decision making, for the NMD task we might expect operators
to base their decisions to withdraw GBIs on the particular probability (worst case, best case or
expected case) that is highlighted.

Second, graphically displaying the actual probabilities that human operators must take
into account during decision making is one method of helping humans with interpreting
probabilistic information. The value of graphical displays has been evaluated in several studies.
Pitz (1980) suggests that graphic displays of probability (and other quantitative information) may
result in better decision making since such displays are hypothesized to be interpreted by fast
perceptual processes, rather than by the slower processes involved in encoding the symbols
inherent in numeric representations. Graphical displays of uncertainty in a prediction task were

also shown to be helpful by MacGregor and Slovic (1986).
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Third, the literature has shown that graphical displays of probability information help
decision making over the numerical display that is characteristic of that currently used in the
NMD prototypes. Andre and Cutler (1998) showed that displaying uncertainty or probability
could help performance over no display of uncertainty and that graphically displaying
uncertainty lead to the better performance than displaying uncertainty numerically.
Kirschenbaum and Arruda (1994) evaluated different methods of displaying probability
information for the spatial task of predicting the location of submarines. Their results indicated
that graphic displays of probability did result in better predictions than verbal representations.

Schwartz and Howell (1985) used a simulated hurricane-tracking scenario to evaluate
decision making. They varied the display of position history (numeric or graphical) of a
hurricane and required subjects to make a decision (whether or not to evacuate a populated area)
at various points throughout the scenario. They also added a decision aid in some conditions by
displaying updated probabilities of the likelihood that the storm would hit a populated area at
each decision point in the scenario. These probabilities were presented numerically. Their
results showed that subjects in the numeric display condition were less efficient (took more time,
no increase in accuracy) than the graphical condition. The probability decision aid raised the
accuracy of all decisions significantly. When the same experiment was conducted using display
format as a within subjects variable, graphical displays of time history resulted in significantly
greater performance than numerical displays.

Stone, Yates and Parker (1997) examined the effects of various ways of displaying low-
probability risk information on risk-taking behavior. They presented subjects with information
on a brand of tires said to reduce risk of blowout over the standard brand and information on a

brand of toothpaste said to reduce the risk of gum disease-over a standard brand of toothpaste.
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Both risk-reducing brands had higher prices than the standard brands. The risk information was
presented to subjects was presented in numeric format of expected injuries, or in different

graphical formats. Their results indicated that graphical representations decreased risk-taking

behavior over numerical representations of risk. This means that subjects were more likely to

purchase the more expensive, yet safer, products even though their probability of occurrence was
very low.

Thus, the literature has provided evidence for our display selection. First, providing
predictive information can help performance for tasks where prediction is required (Wickens,
1992; Wickens and Morphew, 1997; Gempler and Wickens, 1998). Second, the value of
graphical displays for improving performance has been shown in several studies (Pitz, 1980;
MacGregor and Slovic, 1986). Third, graphically displaying probability or uncertainty has been
shown to aid decisions over numeric or verbal representations (Stone, Yates & Parker, 1994;
Schwartz and Howell, 1985; Kirschenbaum and Arruda, 1994; Andre and Cutler, 1998).

For the NMD task, risk is displayed in both the graphical form of the probability
distribution, and the numeric form of the expected number of GBIs required to handle the threat,
as shown in Figure 1. Highlighting the numeric form may reduce the subjects tendency to focus
on the low probability worst case scenario and withdraw more GBIs than required. The issue of
what is and is not highlighted or noticed in a complex decision display such as that in Figure 1,
makes relevant the issue of salience and its effect on decision making.

1.2.2 Salience

As discussed earlier, a display such as the Risk-Display shown in. Figure 1 can provide
aiding to probabilistic decision making. However, such a complex, multi-element graphic
display, particularly when used under time pressure, will challenge selective attention, possibly

causing users to overweight or over-attend to certain parts at the expense of others. Research
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indicates that highly salient information tends to influence decisions more than it should in
general (Payne, 1980) but even more so under conditions of time pressure (Wickens and
Hollands, 1999). In the NMD task, since the information presented is complex and time pressure
is involved, operators may tend to make decisions based on the most salient pieces of
information without accounting for the other relevant pieces of information that are presented to
them. Past research has revealed that attention to multi-element decision displays is driven
heavily by salience, but salience itself can be defined in two contexts: salience of the mental
representation for a signaled element and physical salience of a display item. We discuss each of
these in turn:

The salience in memory associated with rare events with extreme consequences, appears
to result in an overestimation of the probability of their occurrences. In the NMD task, the
display provides probabilistic information to the operator for three outcomes (worst case, best
case and expected case, see Figure 1). The worst case probability is defined as the likelihood of
the event where all enemy warheads fired at the United States survive, or “leak,” through the
GBI defenses. This worst case probability is a very low probability, rare event. For example, if
six enemy warheads are launched against the United States, then given the estimated .80 value of
destroying each one, the calculated probability of all six of them surviving the initial defensive
launches and hitting their targets is only .000064, but a number of such a small magnitude is
difficult for most humans to comprehend accurately. For example, it has been shown that people
tend to overestimate the occurrence of very rare events (Tversky and Kahneman, 1981).

One example of the overestimation of low probabilities has been shown with subjects
estimating statistical values of a data set. Numerical estimates of variability seem to be

influenced by highly salient, or extreme (and rare), members of the data set, instead of being
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fairly based on all values of the data set (Pitz, 1980). The overestimation of the probability of
rare events also leads to behavior reflected by the purchasing of insurance against accidents or
disasters, or high stakes gambling. In both cases, the events in question (accident or disaster and
winning large amounts of money) are quite rare, yet, because of their salience humans tend to
overestimate their probabilities of occurrence and purchase insurance policies or place bets. This
happens because the subjective expected gain (saving property or winning money) or loss
(accident or losing money bet) is higher than the objective expected gain or loss, as is evidenced
by the financially successful insurance and gambling industries throughout the world. In the
NMD task, the low probabilities are associated with the worst case situations. These situations,
although extremely rare, may be quite salient to the operator as is the thought of a costly car
accident or natural disaster to the potential insurance customer, or the thought of winning a
million dollars is to the potential gambler. This salience would help to explain the tendency of
operators to over-intervene in the automation, as shown by preliminary simulation results.
Salient risks are also overestimated by humans, despite their low probability. For instance,
Combs and Slovic (1979) showed that people over-estimated the risk of highly publicized events
in the media such as terrorist bombings or plane crashes. Additionally, Slovic (1987) found that
people estimated the risk of dying in a plane crash (rare, yet salient event) as higher than the risk
of dying from a fall in the home, even though these risks are actually reversed. In summary, the
very low magnitude of the probabilities associated with rare events is generally not taken into

consideration when people make their decisions.
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The overestimation of probabilities of rare events may be best summarized by a
hypothetical function created by Tversky and Kahneman (1981) to describe human decision

behavior, shown in Figure 4 below:

1.0 i

Subjective
Probability .5

Stated Probability

Figure 4. Weighting function for human probability assessment (Tversky and Kahneman, 1981).

As shown in the figure, human interpretation of probabilities (as shown by the red diagonal line)
is exaggerated for rare events (with small probabilities) and is also somewhat insensitive to
changes in probability values at low probabilities, as shown by the flattened out portion of the
curve for the lower probability values. The above literature provides a partial explanation for the
operator’s tendency to intervene in the automation as shown in the preliminary results of the
NMD simulations (M. Barnes, personal communication, 1999). The salience of the worst case
probability would cause the operators to plan for that outcome by withdrawing more GBIs from
the reserve, even though the worst case is a very low probability event.

Given this knowledge about the human tendency to overweight in memory the likelihood

of low probability but salient events, we can now focus our efforts on trying to remediate the
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tendencies that would lead to poor performance in the NMD task (the desire to withdraw more
GBIs than necessary). To do this, we consider the second definition of salience for the present
study: the perceptual salience of display properties. How complex information is displayed can
greatly affect operator decision making (Wickens and Hollands, 1999). The brightest, most
colorful, or visibly located display properties are typically the most salient, leading human
operators to process the content contained in these highly salient display parameters over that of
less salient display parameters (Wickens, 1992; Payne, 1980). Wallsten and Barton (1982)
examined one aspect of perceptual salience by manipulating the position of i.nformation cues
within a display. They found that the cues presented at the top of the display (more salient) were
selectively processed even though they were contained equal or less diagnostic value than the
cues at other positions within the display. This selective processing of perceptually salient
information can bias decision making (Wickens and Hollands, 1999).

Kaplan and Simon (1990) found that decision making is improved if the critical attributes
of a decision are perceptually salient. Montgomery (1999) found similar results in a study on
human sensitivity to variability of information. In this study, subjects had to interpret a graphic
display which portrayed information about the variability of several sources of data. They then
had to decide which source had higher reliability (lowest variability). Subjects who saw a
display with the most diagnostic information highlighted performed better than those who did
not. Since we would like people to behave more optimally with the NMD system, or make their
decisions based on expected case probabilities rather than the memorably salient worst case,
highlighting the expected case portion of the display should lead to more appropriate decisions,
whereas highlighting the worst case probability should lead to the tendency to withdraw more

GBIs than are required.
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Schwartz and Howell (1985) summarize the possible effects of display manipulations on

human decision making as follows:

“ ... display format can affect decision performance in very subtle ways. Not only can it
bring out aspects of a data set (such as trend information) that are otherwise difficult to
perceive—the well-established and relatively obvious ‘compatibility’ phenomenon—it
can alter the decision maker’s whole approach to information processing. In a sense it

%

can alter his/her processing ‘set.

A review of the literature revealed no decision making study that has systematically
examined the processing of best case, worst case and expected case probabilistic data within a
distribution such as that shown in Figure 1, nor how this processing (and the distribution of
attention) might be altered by changing the nature of the display representation. In the present
study, participants are presented not only with the worst case probability information, but also
the best case and the expected case probabilities. We seek to determine how highlighting one of
these probabilities in a display could influence operator decision making.

1.2.3 Biases in the Diagnosis Stage of Decision Making: Overconfidence

In the diagnosis stage, where operators formulate their beliefs about the current situation,
the operators’ confidence in their own decision-making ability may affect their decision. For
instance, if an operator feels that he or she can make GBI allocations better than the automation,
he or she will be likely to intervene. Several studies have shown that peéple are generally
overconfident in their state of knowledge (see Wickens and Hollands, 1999 for a review) and
people tend to report high confidence levels in their assessments or predictions, regardless of the

correctness of their answers (Kleinmuntz, 1990). This overconfidence has also been shown in
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judgments of abilities, such as eyewitness memory and knowledge of facts (Wells, Lindsay and
Ferguson, 1979; Fischhoff, Slovic and Lichtenstein, 1977; Bornstein and Zickafoose, 1999), as
well as in human interaction with automation as discussed earlier (Kleinmuntz, 1990).

Overconfidence is also present when humans must integrate information over time, such
as in the NMD task. The critical issue here is how confidence evolves over time, i.e., if people
are overconfident in their diagnosis, they may stop their search for information early and make a
premature decision based on incomplete information (Wickens and Hollands, 1999). In the
NMD task, if an operator is overconfident, they may both be more likely to intervene and to stop
their information seeking early, and make decisions based on initial information presented,
similar to the primacy effects to be discussed in the following section.

1.2.4 Biases in the Diagnosis Stage of Decision Making: Primacy and Recency

One piece of information available to the NMD officer is the results of previous GBI
launches against incoming warheads from earlier engagements. The operator can see on the
display how successful the automation’s GBIs were in destroying enemy warheads from earlier
enemy launches within the battle. Studies on biases in probabilistic decision making has shown
that that past events can shape present decision making when information must be integrated
over time (Adelman and Bresnick, 1992; Tversky and Kahneman, 1974; Hogarth and Einhorn,
1992). However, in the case where new information entirely updates old information, then past
events (old events) should have no relevance, and recency is an appropriate heuristic for making
decisions. In the same case, if the old information is considered more relevant than the new
information, a primacy effect exists. The primacy effect can take two mﬁin forms: anchoring
effects or contrast effects. Anchoring occurs when the later situation is evaluated the same as an
earlier situation, regardless of evidence to the contrary. What is unclear is how these heuristics

and biases will play out in terms of the missile defense task.
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In the NMD task, the operator must perceive information and integrate it over time in
order to make accurate decisions. However, integrating information over time is difficult and
consequently, the human operator often takes advantage of systematic heuristics. One of these
heuristics is called anchoring, describing a type of primacy effect. Here, diagnoses are made
while using the initial piece of evidence as an anchor (Tversky and Kahneman, 1974). That is,
the first piece of information presented or discovered has a stronger effect on the final diagnosis
than do subsequent pieces of information. Literature on primacy effects in decision making for
an applied setting is relatively scarce. One relevant applied study by Tolcott, Marvin and
Bresoick (1989) examined the decision making of Army intelligence analysts. These analysts
were given multiple pieces of information concerning the location of an enemy force during a
simulated battle. The analysts developed an initial hypothesis with this information and
subsequently were found to give significantly higher weights to evidence that was consistent
with these initial hypotheses. The results of this study suggest that anchoring effects may be
observed during applied, dynamic decision making tasks, such as those of a National Missile
Defense human operator.

Anchoring is one example of primacy, in which later diagnoses are consistent with earlier
information. For example, if an earlier evaluation was of a poor situation, then later evaluations
will also be biased toward the negative, independent of subsequent evidence. However, primacy
may also be manifest as a “contrast effect.” This effect is defined as the opposite of the
anchoring effect. For example, if an earlier evaluation was of a poor situation, then later
evaluations will be biased positively, independent of the evidence. This form of primacy reflects
a trend effect such that evaluations depend on the rate of change between past and present

evaluations.
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While anchoring involves decisions made by overly weighting an initial piece of
information, the recency effect in information integration and diagnosis describes a heavier
weighting of the most recently observed piece of information. The order effects of primacy and
recency can also appear to_ggther in some combination resulting in middle pieces of information
being weighted less than the other pieces of information in decision making (Hogarth and
Einhorn, 1992). Hogarth and Einhorn (1992) examined circumstances under which recency
versus anchoring would occur. They found that for simple tasks, where a judgment is made only
once, after receiving all information, anchoring is observed most often. For more complex tasks,
where overt judgments are required several times during the sequence of presentation of
information relevant for a diagnosis, and the information is therefore processed in steps, the
recency effect is observed most often. The NMD risk assessment task is definitely a complex
task, so we might expect recency to be a factor in operator decision making. Furthermore, the
operator must make repeated assessments after each new piece of arriving information, also
inviting recency. The particular NMD scenario is one in which each new piece of information is
assumed to update and replace prior information. Hence, it is a scenario in which recency is
optimal, and anchoring is clearly a non-optimal bias. Our interest in this study was to determine
the extent to which anchoring had any effect on performance. That is, the extent to which an
assessment at time T was influenced by the nature of evidence presented at an earlier time.

1.2.5 Biases in the Choice Stage of Decision Making: Framing

One limitation of human decision making is framing. In general terms, framing describes
how the way in which a choice is presented can influence the decisions made. For example, in
choices involving gains people tend to be risk averse, whereas in choices involving losses,

people tend to be risk seeking, even though the probabilistic outcome in both choices may be
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equivalent (Tversky and Kahneman, 1981; Carroll, 1980; Puto, Patton and King, 1985; Schurr,
1987; McNiel, Pauuker, Sox and Tversky, 1982).

In the NMD system, “risky” operator behavior is defined as intervening in the
automation, and withdrawing more GBIs from the reserve. From the operator’s perspective, this
behavior would be deemed “conservative” since more GBIs are withdrawn to reduce leaking
warheads and protect the United States. From the operational perspective however, any instance
where the human intervenes to override the automation is considered to be “risky” behavior.
Framing has also been shown in decision making for dynamic systems. Nygren (1997) showed
that the framing of instructions (losing or gaining performance points) in a multitask dynamic
system influenced decision making strategy such that subjects in the negative framing group
performed differently than those in the positive framing group. In the NMD task, the way in
which the instructions for the task are presented to the operator for example in terms of saving or
losing human lives, or saving or losing GBIs for future use, may cause framing effects. This bias
is guarded against in the present study by providing all subjects with the same task instructions
that contain both positively and negatively framed wording (further discussed in methods

section).

1.3 Literature Summary and Task Overview

The literature on probabilistic decision making and human interaction with automation
identifies several biases that may be relevant to the decision stages of the NMD task.
Preliminary investigations have shown that operators in the NMD task héve a tendency to
intervene too much in the automation (M. Barnes, personal communication, 1999). A review of
literature on human interaction with automation (Riley, 1996; Liu, Fuld and Wickens, 1993)

reveals that under-trust of the automation, due to operator overconfidence and/or lack of
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understanding of automation processes, may be responsible for the tendency to withdraw more
GBIs than are optimal. During the decision making process, salience of display parameters may
bias decision making (Payne, 1980). Also, the order in which information is presented may
change decision making such that information presented last in a sequence (recency), during a
multi-step task, is weighted more than the other pieces of information (Einhorn and Hogarth,
1992); but other circumstances may lead to primacy instead.

We now turn to an overview of the experimental NMD simulation that we will employ to
provide context in which we will examine the nature of order effects and the influence of display
salience. In the simulation, information is presented to the human operator that must be
processed in limited time with severe consequences. The operator views a display which shows
enemy warheads as icons moving across the screen as they travel across the earth towards the
United States. As soon as the automation identifies these enemy warheads and determines their
intended targets, it launches our GBIs at each of the incoming warheads. This allocation of GBIs
to warheads is also shown on the operator display screen. The results of our counter-attack of
GBIs for each launch of enemy warheads, are also shown to the operator. The total number of
GBIs available in the immediate pool is also presented, as well as a display that shows the
expected case, worst case, and best case value (all in terms of number of GBIs necessary for
defense in the relevant case) as they change with the course of events, as shown in Figure 1. The
operator monitors the automated system, but also has control over a pool of 15 “reserve GBIs,”
not included in the calculations of the automation. We chose to incorporate 15 reserve GBIs to
be consistent with the number used in the actual version of the software. -At four specific
decision points at which new information becomes available, the operators can choose to

withdraw and deploy these reserve GBIs when they determine that the risk warheads hitting the
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United States has reached what they feel to be an unacceptable level. However, they are
cautioned as to the value of these reserves for others, and that they should not be squandered
needlessly. In the actual NMD system, non-optimal operator behavior would be very costly. If
operators chose to withdraw too many reserve GBISs, our defense against a future threat would be
severely compromised since these reserve GBIs are limited in number. If not enough were
withdrawn, our defense against the current threat could be compromised. A possible subject
behavior might have been to use all GBIs each scenario, since 15 were given in each scenario.
The importance of conserving GBIs, based on possible future threats in the actual system, was
emphasized to subjects in the experiment instructions (Appendix A) as well as during the
practice scenario.

In the experiment, the subjects saw 40, two-minute scenarios that contained two enemy
launches each. We manipulated the portion of the display in Figure 1 that was highlighted
(either the worst case, expected case, best case probabilities, or none) to determine salience
effects; and across scenarios we vary the time sequence of success of the launches, in order to
determine the existence of order effects. Our display manipulations may help to calibrate the
human operators trust in the automation based on the findings of Gempler and Wickens (1998).
In the Attention stage of decision making, we expect to see the perceptual salience bias where
salient aspects of the display itself get more attention during decision making (Wickens and
Hollands, 1999). Thus, highlighting the worst case portion of the display should induce subjects
to be more likely to intervene. Highlighting the aspects of the display that would lead to more
appropriate decision making could mediate the operator’s tendency to intervene. In the
Diagnosis stage, we expect to see the operator overconfidence in his or her own decision making.

Also in this stage, we predict effects due to the order that the operator receives information over
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time (Tversky and Kahneman, 1974; Hogarth and Einhorn, 1992). Specifically, we expect to see
recency effects where the most recent information influences operator decision making, but we

look for any non-optimal contributions of primacy in the form of anchoring effects.
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2. METHOD
2.1 Participants

Twenty military personnel participated in the experiment, 17 males and three females.
All subjects were United States Air Force and United States Army personnel, four Officers, and
16 Officer Candidates. It should be emphasized that because the NMD system is not actually
built there is no actual user population from which to draw subjects. Subjects were paid six
dollars an hour for their participation, and were recruited to participate on a volunteer basis.

Active duty military personnel declined payment due to administrative restrictions.

2.2 Apparatus and Procedure

The experiment took place on a Windows NT workstation computer, with a 19-inch full
color, high-resolution monitor. Subjects sat directly in front of the computer screen, and inputted
their answers to questions with the numeric keypad on a normal keyboard. The NMD
Visualization software used was a modified version of software developed by Jamieson
Christian, TRW, for the Army Research Laboratory. Subjects were introduced to the paradigm
through a lengthy series of instructional slides on Microsoft PowerPoint (Appendix A), followed
by a two-minute practice scenario with questions allowed. The instructions explained the display
components, and showed how the probability distribution was generated. To guard against
possible framing effects as seen in Nygren (1997), all subjects were presented instructions which
contained both positive (saving human lives) and negative (losing GBIs) framing. Subjects then
went through a series of forty scenarios. Each scenario consisted of two .enemy launches of six
warheads each, and four decision points. Each scenario was 126 seconds long, and stopped
automatically. Once one scenario ended, another would show up on the computer monitor

automatically, but the subject had to start it him or herself by pressing a play button with a
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mouse click. The decision points always followed information updates directly. The following

figure illustrates the sequence of events for each scenario:

Information received
after enemy launch

#1, and automation
retaliation #1

Feedback received
from results of
automation
retaliation #1

i

Information received
after enemy launch
#2, and automation
retaliation #2

Feedback received
from results of
automation
retaliation #2

FB2 f

In FB1 I2
| | I | | Time, s
0! Qll le le Q|4 126
¥ e e ¥
Subject Subject Subject Subject
Question 1 Question 2 Question 3 Question 4

Figure 5. Scenario Timeline of Events

Each question asked the subject how many GBIs, if any, he or she wanted to take out of the

reserve pool of GBIs to handle the current threat as they interpreted it. Questions remained on

the screen for 10 seconds, and no subject failed to answer a question within the time limit.

Subjects entered their responses manually on the keyboard. All subjects were allocated 15

reserve GBIs per scenario, and the program kept track of how many they had used for the

previous questions. If a subject ran out of GBIs, the only response allowed by the program was

“0.” In this case, subjects were also asked to report verbally, how many GBIs they would have

chose to withdrawn had any been remaining. This was recorded by the experimenter, and used

for later analyses to determine the actual pattern of subject responses, in addition to the
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artificially constrained pattern, with a 15 GBI total for each scenario. All scenarios started with
six incoming warheads at I1, could vary in the number destroyed at FB1, depicted an added
number of warheads at 12, and could vary in the number of warheads destroyed at FB2. Thus
across scenarios the final number of missiles in the air, after FB2 could vary between zero and
ten.

The forty scenarios differed in the trend of the two launches (good-good, good-bad,
expected-expected, bad-good, bad-bad) as well as the display highlighting (expected case
highlighted, best case highlighted, worst case highlighted, no highlighting). After each scenario,
the subject was required to verbally report a confidence rating to the experimenter. Subjects took
between two and three hours to complete the experiment, and were allowed to take a short break
when they were halfway done with all scenarios, as necessary. The completion time differences
between subjects were due to individual differences in the lengths of time needed to go through
the instructions and practice scenario enough to fully understand the experimental task, as well

as desire to take a break or not take a break at the halfway point.

2.3 NMD Displays

Subjects were presented with the full NMD display suite, but instructed to attend only to
two parts: the Risk-Display and the Timeline Situation Display, with the Risk-Display being
their main source of information for decision making. Other parts of the display suite were
visible, but not relevant to the task. Figure 6 shows a sample of the entire NMD display suite

which was presented to the subjects during the experiment:
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GBI Allocation

Figure 6. NMD Display Suite: Top horizontal panel and bottom right panel were irrelevant to
the task, Risk-Display is the large area on the left, and the Timeline Situation Display

is the large area on the right.
Subjects were presented the entire suite and instructed to ignore the top gray rectangular display
and the bottom right display, attend to only the Risk-Display (large area on the left) and the
Timeline Situation Display (second largest area, middle right). Subjects were told that the Risk-
Display was the most important source of information, and were given detailed instructions

(Appendix A) on how to interpret it.
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2.3.1 Timeline Situation Display

The Timeline Situation Display shows enemy warheads as bullets pointing to the right,

moving across the screen as a function of time. A sample Timeline Situation Display is shown in

Figure 7.
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Figure 7. Sample Timeline Situation Display

Bullets pointing up are the GBIs, and they appear on the track of a warhead when the
GBI has missed. When an enemy warhead becomes grayed out, with a black X, it has been
destroyed. If it reaches the far right side of the screen, it has been destroyed by hitting its
intended target, and an upward pointing bullet would show up to indicate a GBI miss. Ifa
warhead becomes grayed out some where along its path, before reaching the right side of the
screen, it has been destroyed by one of the GBIs. In Figure 7, the first five enemy warheads (at
the top of the display) all hit their targets, and were missed by five GBIs.‘ The sixth warhead was
hit by a GBI. In Figure 7, we also see a second launch of six enemy warheads (towards the left

of the display), but do not yet know our results against them.
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2.3.2 Risk-Display

The Risk-Display is the largest area shown in the NMD display suite, and was introduced
to each subject as the most important part of the display. As shown in Figure 1 and in the suite
in Figure 6, this display consists of a curve turned on its side which changes shape and position
on the screen. The vertical axis indicates the number of GBIs. The heavy black line represents
the number of GBIs the system has remaining. For the experimental scenarios, this number
always starts out at 28 GBIs. As GBIs are launched at incoming warheads, the number
remaining will drop, and the curve will move down the vertical axis. The horizontal axis
indicates time, so the curve will move right on the screen as time moves on in a scenario.

The solid thick line and number next to it indicate the total number of GBIs remaining at
any given time. In the particular example in Figure 1, six warheads have been identified by the
system, but it has not launched any GBIs yet, so all of the original 28 remain in the system. The
worst case, expected case and best case probabilities are represented by lines on the curve. The
situation where all six warheads leak through the GBI defenses is considered to be the worst
case, while the situation where all six warheads are hit by six of the GBIs is considered to be the
best case, and the expected case is the median value of the distribution. The 15 additional GBIs
in the reserve do not figure into the Risk-Display, or any other part of the display suite

2.3.3 Display Highlighting

Four levels of the highlighting independent variable were employed: best case
highlighting, expected case highlighting, worst case highlighting or no highlighting.
Highlighting was defined by digitally presenting the number of GBIs asséciated with the case to
be highlighted as well as coloring the corresponding area of the curve in red, and flashing the
area slowly by alternating between red and dark red. In the example that was shown in Figure 1,

the expected case is highlighted since that number (7) is presented, and the expected case area of
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the distribution is colored. The display shows that seven GBIs are expected to be needed to
defend against the six warheads that have been launched at us. The Risk-Display in Figure 6,
shows an example of the no highlighting condition in which no area is highlighted with color and
flashing, and the numbers of GBIs required for each case are presented.
2.3.4 Trends

As mentioned earlier, all scenarios included two launches of six enemy warheads each,
and four opportunities for the subject to respond as to how many GBIs they want to withdraw
from the reserve. Different variations of how many GBIs were hit and how many leaked for
each launch (trends) were shown to the subject. Table 1 illustrates how the five levels of the
trend variable were defined, in terms of the number of warheads in the air, still coming towards
the United States, at each of the feedback (FB) points from the Figure 5. Each column contains

two examples of the label at the top of the column.

Bad-Bad Bad-Good Expected- Good-Bad Good-Good
Expected

FB1: 4 FB1: 4 FBI1: 1 FB1: 0 FB1: 0

FB2: 8 FB2: 4 FB1: 2 FB2: 4 FB2: 0

FBI1:5 FB1: 4 FB1:2 FB1:1 FBI1: 1

FB2: 10 FB2: 5 FB2: 4 FB2: 5 FB2: 1

Table 1. Levels of the Trend Variable

The five trend variations changed the shape of the Risk-Display curve, since it is computed based
on the number of incoming warheads in the air at any given time. For instance, if four warheads
from the first launch leaked through the GBI counterattack, they would figure into the curve
along with the six warheads from the second launch for a total of ten warheads in the air. Each
cell of Table 1 is represented by four scenarios, for a total of forty scenarios per subject. As

shown in the above table, some scenarios have the same number of warheads in the air, at the last
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feedback point, but for differing trends. Examining these scenarios in depth and contrasting
judgments on FB2 when preceded by better and worse situations on FB1, will allow us to

determine the existence of any order effects.

2.4 Experimental Design

The experiment used a 4x5 factorial design, with both trend and display highlighting
varied within subject, for a total of 20 cells. Each cell consisted of two similar versions of the
same scenario, for a total of 40 scenarios per subject. The trend independent variable consisted
of five levels (bad-good, good-good, bad-bad, good-bad, expected-expected) and the display
highlighting independent variable consisted of four levels (worst case highlighted, best case
highlighted, expected case highlighted, no highlighting). Both independent variables were
blocked and counterbalanced within each block. There were four blocks, which consisted of 40

scenarios each and five subjects saw each block.

2.5 Performance Measures

The subjects response to each question in each scenario (in terms of the number of GBIs
to withdraw) was recorded as out main dependent variable, for a total of 160 responses per
subject. As mentioned earlier, if a subject exhausted all 15 GBIs allocated in a given scenario,
the experiment also recorded the number of GBIs a subject would have chose to withdraw if any
were left. A confidence rating was also recorded at the end of each scenario, for a total of 40
confidence ratings per subject. Confidence was defined for the subject aé how confident he or
she was in the responses they gave for a scenario. This was reported on a scale of one to 10,
with 10 being the most confident. Finally, a post-experiment questionnaire (Appendix B) was

also administered to each subject.
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3. RESULTS

All statistical analyses were performed using SAS software from the University of
Illinois at Urbana-Champaign. Analysis will be discussed in terms of order effects analysis,
trend, display and question effects analysis, analysis of confidence ratings, and analysis of the

post-experiment questionnaire.

3.1 Order Effects

As mentioned in the Methods section, to examine possible primacy or recency effects,
scenarios which had the same number of warheads in the air at the first or last feedback point
(see Figure 5) were analyzed separately, for a total of 16 scenarios per subject. In the primacy
analysis, eight scenarios had four warheads in the air at the last feedback point, and eight
scenarios had five warheads in the air at the last feedback point. These two groups of eight
scenarios were further analyzed separately. Within the group with four warheads at the last
feedback point, half of the scenarios had four warheads in the air at the first feedback point (4-4),
and half had zero warheads in the air at the first feedback point (0-4). Differing responses for
each of these halves would indicate order effects, that is, the response to the same situation at
FB2 was influenced differently by the conditions at FB1. Similarly, within the group of five
warheads in the air at the last feedback point, half of the scenarios had four warheads in the air at
the first feedback point (4-5) and half had one warhead in the air at the last feedback point (1-5).

As shown in Figure 8 (error bars represent standard errors), the mean GBI responses after
the second feedback point (question four) with the same number of warhéads in the air, differed

with the number of warheads in the air at the first feedback point.



GBI After FB2

GBI after FB2

Mean GBI Responses After FB2 With 4 Incoming Warheads at FB1

35

4-4 4-8
Sequence of Warheads at FB1 and FB2

Mean GBI Responses After FB2 With 5 Warheads Incoming at FB2

1-5 4.5
Sequence of Warheads at FB1 and FB2

Figure 8. Mean GBI Responses
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As shown in Figure 8, within the four warheads incoming on FB2 condition, the
responses after the last feedback point (question four) were significantly higher when there were
zero warheads incoming on FB1 (0-4) than when there were four warheads incoming on FB1 (4-
4). Analysis of these scenarios resulted in an F value of 46.05, and a p value of .0001.
Similarly, within the five warheads incoming on FB2 conditions, responses were significantly
higher when there was one warhead incoming on FB1 (1-5) than when there were four warheads
incoming on FB1 (4-5). With the analysis of these scenarios, the F value was 27.97 and the p-
value was .0001. These results provide evidence for some primacy in the form of a contrast
effect.

To investigate the existence of the more optimal recency effects, scenarios were
identified and selectively analyzed which involved the same number of incoming warheads on
the first feedback point (FB1), and differing numbers of incoming warheads on the last feedback
point (FB2). Eight scenarios were identified which had four enemy warheads incoming at FB1.
Of these, half of the scenarios had eight incoming warheads at FB2 (4-8), and half of the
scenarios had four incoming warheads at FB2 (4-4). Additionally, eight scenarios were
identified which had one warhead incoming at FB1. Of these, half of the scenarios had two
incoming warheads at FB2 (1-2) and half of the scenarios had five incoming warheads at FB2 (1-
5). As shown in Figure 9, subjects GBI withdrawal responses after the last feedback point
(question four) differed with the number of incoming warheads in the air at the second feedback

point, indicating some recency.
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For the condition with four warheads incoming on FB1, GBI responses for question four
were significantly higher for the scenarios with eight incoming warheads on FB2 than the
scenarios with four incoming warheads at FB2 (F=25.80, p=.0001). Similarly, for the condition
with one incoming warhead on FB1, GBI responses were significantly higher for the scenarios
with five incoming warheads on FB2 than the scenarios with two incoming warheads on FB2
(F=65.38, p=.0001). This provides evidence for some recency. From Figures 8 and 9, it is
apparent that the effect of primacy was approximately the same size as the effect of recency.

In both of these analyseé, it is possible that lower responses on FB2 resulted, not because
subjects were more “conservative,” but simply because they had expended most of their 15
reserve missiles available to them by that time. In order to determine that the latter factor could
not account for the data, a second analysis was run, this time replacing the FB2 response value
by the desired value stated verbally by each subject whenever these two values differed. This
verbal response was reported any time the subject ran out of reserve GBIs and wished to
withdraw more than he or she had remaining. The results of these analyses with the desired GBI
responses did not results in different conclusions from those of the actual GBI responses

analyses, so only the analysis of the actual GBI responses has been presented.

3.2 Trend, Display and Question Effects

In order to determine the effect of trend (good-bad, good-good, expected-expected, bad-
good, bad-bad), display highlighting (worst case, best case, expected case, none), and question
(#1, #2, #3, #4) a three-way (5x4x4) Repeated Measures ANOVA was performed with GBI
response as the dependent measure. Responses for the two similar scenarios were averaged
before the ANOVA, for a total of 20 scenarios per subject. Table 2 presents the results of the

ANOVA.
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SOURCE DF TYPEIIISS | MS F P
Display 3 1.579 .526 .56 .644
Error 57 56.615 941

(Display)

Trend 4 779.34 194.835 45.21 .0001
Error (Trend) | 76 327.55 4310

Question 3 1488.121 496.04 9.60 .0001
Error 57 2944.148 51.652

(Question)

Display x 12 3.898 328 72 .730
Trend

Error (dispx | 228 102.66 450

trend)

Display x 9 21.870 2.430 1.00 444
Question

Error (dispx | 171 416.636 2.436

question)

Trend x 12 1256.737 J104.728 15.90 .0001
Question

Error (trend x | 228 1501.995 6.588

question)

Display x 36 46.741 1.299 93 | -589
trend x quest

Error (dispx | 684 955.378 1.400

trend x quest)

Table 2. Repeated Measures ANOV A Table

As shown in Figure 10, the question number had a significant effect on the number of GBIs that

subjects chose to withdraw (F=9.60, p=.0001), with the number of GBIs increasing with the

question number (i.e., as the scenario progressed). Also shown in Figure 10, there was no

significant main effect of display highlighting on GBI response, nor was there a significant

interaction between display and any other variable.
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Figure 10. Mean GBI Responses Across Trend

Since trend and question number are related by definition, examining their interaction is

more meaningful than the main effects alone. A significant trend by question interaction is

shown in Figure 11 (F=15.9, p=.0001) suggesting that the trend changed the effect of th

question on GBI responses. As noted in the context of Figure 10, across all trends GBI

c

response

tended to increase with the question number. This increase was magnified by trend, such that the

GBI response increased the most for the good-bad trend, followed by the bad-bad trend,

expected-expected trend, bad-good trend and increased the least with the good-good trend as

shown in Figure 11. Such an interaction does indeed suggest that most GBIs were withdrawn

when the situation was consistently “bad” (bad-bad) and the least number of GBIs were

withdrawn when the situation was consistently “good” (good-good).
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Mean GBIl Responses Across Display

-¢--bad-bad
—m— bad-good
A -exp-exp
—a-=good-bad
—x— good-good

Mean GBI Responses

Question

Figure 11. Mean GBI Responses Across Display

More importantly, the trend by question interaction adds evidence for a contrast effect, which
can be investigated further by comparing the good-bad trend responses to the bad-bad trend
responses. Both trends end up “bad” but start out at different points (“good” or ‘bad”), when the
first differentiating information becomes available at FB2. In order to visualize the differences,
between these two trends, we analyzed them further, separate from the other trends. Figure 12
shows £he results of overlaying graphs of the GBI withdrawal responses for the two trends,

averaged across display highlighting.
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Figure 12. Bad-Bad vs. Good-Bad Trends

As shown in Figure 12, the bad-bad trend responses started out high at question two, but leveled

out for the remaining questions. The good-bad trend responses started out low at question two,

but showed a very steep increase as the situation became more threatening. Most importantly at

question four (when FB2 offered identical information in both conditions), participants withdrew

more GBIs if the previous situation had been good than when the previous situation had been

bad; here again providing evidence that people are influenced by the trend.

3.3 Confidence Ratings

Confidence ratings were asked of each subject at the end of each scenario on a scale of

one to 10 with 10 being the most confident. Only one confidence rating was recorded per

scenario (which contained four questions of the subject). Confidence was defined as the
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confidence in the subjects own decisions to withdraw GBIs from the reserve. In order to
examine the confidence ratings of subjects, a two way ANOV A was performed, with trend and
display highlighting as independent variables, and confidence rating as the dependent variable.

Figure 12 shows the mean confidence ratings for all levels of display highlighting and trend.

Mean Confidence Ratings

10
9 -
8
L

7 /
Q [ /
g 6 —o—None
% —a—Best Case
LE Exp Case
<] 5 —»—Worst Case
(3]

4

3

2 [

1 i 1 1 .

Bad - Bad Bad - Good Exp - Exp Good - Bad Good - Good

Trend

Figure 12. Mean Confidence Ratings

As shown in Figure 12, no significant effect of display type was observed with confidence
ratings as the dependent variable, but as with the GBI responses, a significant trend effect was
present (F=50.89, =.0001). Table 3 shows the Repeated Measures ANOVA table for confidence
ratings. It is apparent that people’s judgment was more based upon the confidence that the GBI
launching automation was adequately addressing the threat, than upon their confidence that their

own judgment to override and withdraw was the correct one.
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SOURCE DF TYPE I SS | MS F P
Display 3 1.477 l.492 47 701
Error 57 59.086 1.04

(Display)

Trend 4 520.90 130.22 50.89 .0001
Error (Trend) | 76 194.48 2.56

Display x 12 5.364 447 1.10 362
Trend

Error (display | 228 92.761 407

x trend)

Table 3. Repeated Measures ANOVA for Confidence Ratings

3.4 Post-Experiment Questionnaire

In order to further examine subjects decision making strategies in the NMD task, a post-
experiment questionnaire was administered (Appendix B). One question asked what piece of
information from the display helped the most in making decisions, best case probability, worst
case probability, expected case probability, or the past results of launches. Figure 13 shows the

distribution of responses from the 20 subjects:

Expected Case
25%
Past Results
45%

Worst Case
30%

Figure 13. Responses on Most Helpful Piece of Information
Although no display effect was shown through the statistical analysis, 30% of subjects

said they used the worst case probability and 25% said they used the expected case probability in
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making decisions during the task. 45% of subjects said that past results of launches were the
most helpful to them, although these results do not affect the probabilities associated with each
outcome. This is consistent with the analysis of order effects. Subjects were also asked to rate
the ease of interpretation fohr the Risk-Display and the entire display suite. On a scale of one to
seven, with one being the least difficult to interpret and seven being the most difficult to interpret
, the mean subject response for the overall NMD computer display was 2.9 with a standard
deviation of .09. For the Risk-Display only, the u:ean subject response was 3.7, with a standard
deviation of 1.5. In addition, subjects were asked to provide any further comments about the
experiment or the display on the back of the questionnaire form. Only eight subjects provided
written comments, and of these, five comments indicated a difficulty in understanding the Risk-
Display. These results indicate that the Risk-Display was relatively difficult for subjects to
interpret when compared to the display as a whole, which could help to explain the lack of a

significant effect due to display highlighting.
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4. DISCUSSION

The current experiment was conducted to examine the effects of display highlighting and
the order of information presented on operator decision making in the NMD task. We sought to
dgtermine if subjects would be influenced by the order effects of primacy and recency when
making decisions, and if display highlighting of relevant information could influence decision
making and therefore possibly be used to mediate the non-optimal order effects. Contrary to our
predictions from examining the relevant literature, no significant effect of display highlighting
was observed in our study. In the NMD task, recency, basing decisions on the most recent piece
of information, is an optimal decision making strategy since the new information totally replaces
the old information. Primacy, basing decisions on the first piece of information presented, would
be a non-optimal strategy for the NMD task and result in poor decision making. Recency and
primacy effects were both observed with approximately equal effect sizes, indicating some non-
optimal tendencies by operators in the NMD task. However, the primacy effect was not one of
anchoring, in which later evaluation was pulled in the same direction as previous evidence.
Rather the primacy effect was better explained by a contrast effect, in which the current situation
is evaluated in terms of the trend from the past to the present. If things are getting better (trend
from FB1 to FB2) they are more likely to be judged as “good,” whereas if things are getting
worse, they are more likely to be judged as “bad.” Explanations will now be offered for our
findings.

As noted in the results, no effect was observed due to display highlighting, cdﬁtrary to
our predictions from the literature. This lack of a significant effect is possibly due to four
factors: first, as reported in the Results section, data from the post-experiment questionnaires

indicates that the Risk-Display was relatively difficult for subjects to understand, despite the
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detailed instructions. Although we emphasized the importance of the Risk-Display in the
experiment instructions (Appendix A), we have no guarantee that subjects actually paid attention
to the display and used the information it provided to make their decisions. A failure to use
information that is difficult to understand when making decisions has been documented in the
literature (Bettman, Johnson and Payne, 1991; Johnson, Payne and Bettman, 1988). Subjects
could have used only the Timeline Position Display to make their decisions and ignored the
Risk-Display, thus not noticing the display highlighting at all. More research must be conducted
in order to improve the Risk-Display.

Second, the values of the expected, best and worst case probabilities were highly
(although not perfectly) correlated throughout ali of the forty scenarios. This correlation would
have made it difficult to measure the true effect of display highlighting if one actually existed.
Even if subjects did differentially attend to the display highlighting, since the values were
correlated, this would have made it more difficult to assess the extent to which the highlighting
affected their decisions. More heterogeneous, un-correlated probability values would have
possibly have led to a more accurate picture of the influence of display highlighting on operator
decision making.

Third, subjects were not informed prior to the block as to which kind of display
highlighting they were seeing during the experiment. This information could have aided their
decision making by directing their attention before each scenario to the Risk-Display as well as
the highlighted iﬁformation. It also could have helped to make the Risk-Display less difficult to
understand by reducing the amount of information to be processed by highlighting a specific

part. Making sure subjects were reminded prior to each block about the display highlighting and
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directing their attention to the Risk-Display could have led to a better representation of the true
effect of display highlighting on the NMD task.

Fourth and finally, subject overconfidence in their own abilities or lack of understanding
of the automation may have caused them to ignore (or under-trust) the Risk-Display and thus not
pay attention to display highlighting when making decisions. This idea is supported by the
literature concerning human overconfidence during interaction with automated systems. For
instance, Riley (1996) and Liu, Feld and Wickens (1993), found that subjects tended to show this
overconfidence by relying on their own performance even when the performance of the
automated system was superior. Additionally, Kleinmuntz (1990) evaluated the use of decision-
making aids for subjects and found that people viewed the decision aids as inaccurate and relied
on their own abilities instead of using the information provided in the decision aid. For whatever
reason, if subjects did not attend to the Risk-Display during the experiment, highlighting pieces
of information within this display would have not influenced their decisions.

Main effects of question and trend were observed as well as a significant interaction
between the two variables. The first general finding here is that subjects chose to withdraw more
GBIs as time went on in the scenarios, regardless of the trend. This can be considered a rational
response because more incoming warheads would be in the air as time went on, presenting more
of a threat. The next finding is that as the situation got worse (number of incoming warheads
increased), GBI withdrawal responses tended to increase. This can also be considered a rational
behavior since worsening situations would present more of a threat and would require more GBIs
for defense.

While the analysis of trend and question variables thus indicated some degree of rational

and optimal subject behavior for the NMD task, a more detailed analysis did reveal non-optimal
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order effects. Sequential effects were examined for primacy and recency given that recency was
optimal for the NMD task. While there was indeed good evidence for recency, there was also
good evidence for the less optimal primacy effect in the form of a contrast effect, in that response
on FB2 was influenced by the frend from FB1 to FB2. A recency effect was uncovered by
selectively analyzing scenarios with the same number of warheads incoming at the first feedback
point, and differing numbers of warheads incoming at the second feedback point. As we
mentioned, recency is the preferred tactic in making decisions in the NMD environment, because
new information completely updates the old information and becomes the most accurate and
relevant information for the task. However, subjects did not show perfect recency. If subjects
showed perfect recency, then their judgments at FB2 should be totally unaffected by what
happened at FB1. This is clearly not the case with our data.

A contrast effect was uncovered by examining scenarios with the same number of
warheads incoming at the second feedback point, and differing numbers of warheads incoming at
the first feedback point. In optimal behavior, without order effects, there should be no
differences in responses for these scenarios. Further evidence for recency was found in
comparing the good-bad trend to the bad-bad trend as shown in Figure 12. Even though the
trends both end up bad (with a large number of missiles in the air), subjects‘overcompensated
with their GBI responses for the good-bad trend. This indicates that subject decision making was
influenced by the worsening of a situation not only by the present point, which can be considered
a contrast or trend effect.

These order effects could help to explain the “trigger happy” tendency as reported in
preliminary analysis of the NMD task (M. Barnes, personal communication, 1999), and has been

reported in the literature. For instance, primacy was also uncovered in a complex decision
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making task by Tolcott, Marvin and Bresoick (1989). The existence of a recency effect supports
the findings of Hogarth and Einhorn (1992), which stated that for a complex decision making
task, where judgments are required several times during the sequence of information
presentation, the recency effect is observed. While recency is a more optimal form of decision
making in the NMD task, non-optimal primacy was also observed, and should be taken into
consideration when designing automated systems. Although recency is considered to be optimal
for the NMD task, trend perception may also be considered optimal under certain conditions.
For instance, if a worsening trend is diagnostic of system failure, then trend perception and
increased pessimism would be optimal behaviors. In a system with lags, trend perception would
also be an optimal form of operator behavior in order to anticipate future system responses.

This study indicates at least two future directions for experimental research concerning
the NMD system mentioned previously. Since the display highlighting variable alone was not
an effective means of altering subject decision making, experimental changes should take place
to determine if there truly is an effect of display highlighting. First, in order to ensure that the
highlighting is noticed, the Timeline Position Display could be deleted from the NMD display
suite, forcing subj ects to attend to the Risk-Display to obtain the information they need. Second,
the values of the different cases (best case, worst case, expected case) could be altered to ensure
that they were not highly correlated. We expect these experimental changes to lead to a

significant display effect as predicted in the literature (Payne, 1980).
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All of the countries depicted above in black are suspected or
known to possess the technology required to launch missiles at
the United States. This may not be a comprehensive depiction.

Your role, as the Ballistic Missile Defense Operator (BMDO), is to
monitor the system implemented for the defense of our country.
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In general, the National Missile Defense (NMD) system consists of
radar and satellite systems to track missile launches, a ground
based interceptor system to target and destroy incoming missiles,

and you, the BMDO.

As missiles are launched against us, the automated NMD system
tracks them and launches Ground Based Interceptors (GBIs) at
each incoming warhead. These GBIs are limited in number and
must be conserved. A reserve supply of GBIs does exist for you
to use, if necessary. As the monitor of the system, your job is to
act as a final safeguard, and to determine if the actions taken by

the automation appear to be correct, and in particular, if it appears

necessary to withdraw GBIs from the reserve.
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The NMD display screen depicted above, gives you all of the
pertinent information concerning the actions of the automated system
that you are to monitor. The parts of the display outlined in black
contain information for other operators, and is of no use to you. The
rest of the display contains two parts: the Risk Display (highlighted in

green), and the Current Missile Display (purple).

000000

Time ‘

As warheads are launched at the US, the Current Missile Display
shows each warhead moving across the screen as a function of time,
from launch toward the destination (right side of the screen). Active

warheads are shown in red. When the automation suspects a warhead
exists, it shows up as an outlined red bullet (like above). When the
automation confirms that suspected warheads are actual warheads, the
bullet will become solid red. When the automation determines where
the warhead is going, a letter designator will appear by the warhead.
When the automation launches our GBIs at a warhead, the targeted
warhead flashes yellow and red.
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Destroyed warheads are shown in gray with an X. There are
two ways for a warhead to be destroyed: by hitting its target, or
by being hit by a GBI. If a GBI destroys a warhead, it will
appear as warhead E above. If a GBI misses a warhead, the
GBI will show up as a light blue bullet, and the warhead will
continue to travel across the screen until it is destroyed by
another GBI or hits its intended destination and turns gray (like
warheads J,D,W,G & B above).

000000

Time

As incoming warheads travel across the earth (and your screen)
we will have multiple opportunities to destroy them. However,
beyond a certain point, it becomes too late, and the automation
will have no more chances to shoot down a warhead with GBIs
before it hits its final target. Furthermore, our GBIs are not

perfect. There is approximately a 20% chance that a GBI will
miss the warhead it was targeted to hit. Since GBIs can miss,

there is additional risk involved that is shown to the operator in

the form of the Risk Display.
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The Risk Display is the most important display feature. This shows
the total number of GBIs available at any given point (22 in the
example above), as well as a distribution of outcome possibilities
that can be represented by three probabilities. The three dividing
lines in the Risk Display (marked with arrows above) represent the
probabilities, or chance, that each case could occur.
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You have 28 GBIs in the system at the beginning of each scenario.
Each time enemy warheads are launched, the automation fires 1
GBI at each warhead, decreasing the total number of GBIs
available. In the above example, 6 warheads have been launched at
us, so the automation fired 6 GBIs back, decreasing the total from
28 to 22 (marked with arrow). There are also 15 GBIs set aside in
the reserves, some or all of which you can choose to withdraw when
you are given the opportunity to do so.
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The Risk Display will now be discussed in more detail.
Since this is the most important source of information for you, it is
important that you understand this display thoroughly.

As we mentioned, our GBIs are not perfect- there is only an
80% probability that a GBI will destroy the warhead it was targeted
at. This leaves a 20% probability that the GBI will miss, and the
warhead will survive, or “leak” through our defenses. If there are 2
warheads fired against us, there is only a 64% probability (80%
squared) that both of them will be destroyed by our GBIs, which
leaves a 32% probability that 1 will be destroyed and 1 will leak,
and a 4% probability that both will leak. Destroying both warheads
in this case, is considered to be the “best case,” while missing both
warheads is called the “worst case.”

If several warheads are fired at us, there are many different
possibilities of how many leak and how many are destroyed. The
calculation of the probabilities associated with each possibility
becomes more complex, so we will represent these probabilities as
a graphical distribution. Consider the situation that 6 warheads are
fired against us. The following distribution exists:

Probability of leak

Warheads

6543210
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Shown on the graph below, are the probabilities of leaking associated
with each event, for the case that 6 warheads are launched against us.
They are calculated with the binomial formula. For instance,

The probability that 5 out of 6 warheads leak=

(Ll.zis‘ =.001536
(5N

393210

Probability of leak
292144

Warheads

543210

The same type of distribution will be shown on
your Risk Display, with a curve fit to it, and
turned on its side:

‘ Probability of leak

Probability of teak

—

Warheads

6543210
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Lets consider this example further. There are three important parts to
this distribution. The worst case, is the case when all six warheads
leak, and more GBIs must be launched. This is a very low probability
that is calculated by the automated system. Remember that when only
2 warheads were fired at us, the probability that both warheads will leak
was only 4% , so the probability that 6 warheads will leak when 6 are
fired at us will be much smaller.

Probability of
leak

01T ¢€¥vs 9

Best case

speayrem

The best case occurs when all 6 warheads are destroyed by our GBIs, so
no more GBIs will be needed to deal with them. This probability is also
calculated by the automation. Remember with 2 warheads launched, it
was 64%, so with 6 warheads, this probability will also be lower.
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Finally, the expected case can be thought of as a long term average of
how many warheads will be destroyed. It is also estimated by the
automation, and is at the center of our distribution.

Throughout the experiment, you need to

examine the distributions shown and determine if
the level of risk they show demands the launching
of more GBIs.

Remember, to further help you, the Risk
Display also shows the total number of GBIs you
have on hand on the left side of the distribution (not
including the 15 in reserve). ,

The example on the right of this screen is =
one example of a Risk Display. Shown is the
distribution (outlined in blue), as described earlier,
which moves to the right of the screen as time goes
on. It will also move up and down the screen as
GBIs are launched, and will change its shape as
different numbers of un-destroyed warheads remain |
traveling toward us. Notice the three dashed lines
to the left of the distribution correspond to the
worst, expected and best cases.

Worst Case
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The solid red line and number next to it indicates
the current number of GBIs on hand at any given
time. Notice the green area between the red line
and the line corresponding to the worst case. The
green area means that even if the worst case occurs,
you will still have enough GBIs to handle the
threat.

Worst Case

As the attack evolves, you must continue to make
assessments of how much at risk we are in failing to destroy all
incoming warheads, given how many GBIs we have.
(Remember, the supply of GBIs starts at 28 and decreases for
every GBI that is launched). The Risk Display provides you
with the information necessary to make these risk assessments.
If you feel that the risk is too high, or may soon become too
high, then you should choose to withdraw GBIs from the reserve
when you are given the opportunities to do so. However, you
should be careful in deciding to withdraw GBIs since once they
are launched, they can not be brought back, and will not be
available for possible future attacks. Remember that the number
of reserve GBIs is limited to 15.

To reiterate, the NMD system automatically fires back at
incoming warheads, this is something you monitor, not control.
You do control the launch of the 15 reserve GBIs. These reserve
GBIs are not included in your risk display.
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To summarize, you are monitoring a battle. Warheads are
launched at us, our automated system fires back GBIs at these
warheads, and the display will show you the results of each launch.
Based on the display, and the tradeoff between how many GBIs we
have, and how many GBIs you think we will need, you must decide
whether or not to withdraw GBIs from the reserve. If you do not
withdraw enough GBIs from the reserve, we could be hit by leaking
warheads, if you withdraw too many, we won’t have enough to defend
ourselves against warheads launched later. This is the tradeoff that you
must deal with when making decisions.

You will see a series of simulated missile launches, each
simulation lasts about two minutes. Each scenario involves 2
launches, of six warheads each. You must interpret the information
given on the display, and determine how many, if any, GBIs you
would want to take out of the reserve to handle the situation. You
have 15 GBIs in the reserve for each scenario. The system will
keep track of how many GBIs you have remaining, and show this
number to you each time you are asked how many you want to
withdraw. You will be asked to make this determination 4 times
during each simulation. Your answer will not affect the simulation.
It is very important that you make these decisions as quickly as

~possible; at most, you’ll have 10 seconds to input an answer to each
question. As in the actual system, during your experiment, time
will be limited. It is critical that you think carefully about your
decisions, and also answer within the 10 seconds given.
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Finally, it is very important that you think about your
decisions carefully. In the actual system, operator decisions would
result in saving the lives of American citizens, or the failure to do
SO.

Each simulation will automatically load following the end
of the previous simulation, but they will not start automatically.
You must press the (play) button at the bottom right of your
screen when you are ready to start the simulation. You can not stop
a simulation once it is in progress. At the end of each scenario, the
experimenter will ask you how confident you felt about the
correctness of your responses, from 1-10 with 10 being the most
confident. Throughout the scenarios, different parts of the display
will be highlighted, and different probabilities will be shown to aid
your decision making.

Now, we’ll walk through a practice scenario to make sure
everything is clear. Please ask any questions you might have.
Thank you for your participation.
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APPENDIX B: POST-EXPERIMENT QUESTIONNAIRE

Subject Number

Thank you for completing the experiment, please take a few minutes to answer
some questions concerning the design and ease of use of the NMD system.
Please circle your response

1.  Overall, how easy to interpret was the NMD computer display?
(1=very easy, 7=very difficult)
1 2 3 4 5 6 7

2. How understandable were the instructions given before your
experiment?
(1=not understandable, 7=very understandable)
1 2 3 4 5 6 7

3.  How easy to interpret was the Risk-Display part of the system?
(1=very easy, 7=very difficult)
1 2 3 4 5 6 7

4. What piece of information helped you to make your decisions the most?
a)  best case probability
b)  expected case probability
¢)  worst case probability
d)  past results of launches
e)  none of the above

S. During the experiment, I found myself confused:
almost never sometimes often

6. How comfortable were you in using the NMD computer display to make
decisions?
(1= not comfortable, 7=very comfortable)
1 2 3 4 5 6 7

Please list any additional comments about your preferences for the NMD display
system or the experiment on the back of this form.



